Single-step synthesis of silver sulfide nanocrystals in arsenic trisulfide

نویسندگان

  • Juliana M. P. Almeida
  • Chao Lu
  • Cleber R. Mendonça
  • Craig B. Arnold
چکیده

Silver sulfide nanocrystals and chalcogenide glasses (ChGs) are two distinct classes of semiconductor materials that have been exploited for new infrared technologies. Each one exhibits particular optoelectronic phenomena, which could be encompassed in a hybrid material. However, the integration of uniformly distributed crystalline phases within an amorphous matrix is not always an easy task. In this paper, we report a single step method to produce Ag2S nanocrystals (NCs) in arsenic trisulfide (As2S3) solution. The preparation is carried out at room temperature, using As2S3, AgCl and propylamine resulting in highly crystalline Ag2S nanoparticles in solution. These solutions are spin-coated on glass and silicon substrates to produce As2S3/Ag2S metamaterials for optoelectronics. ©2015 Optical Society of America OCIS codes: (160.2750) Glass and other amorphous materials; (160.3918) Metamaterials; (310.0310) Thin films. References and links 1. A. L. Rogach, A. Eychmüller, S. G. Hickey, and S. V. Kershaw, “Infrared-emitting colloidal nanocrystals: Synthesis, assembly, spectroscopy, and applications,” Small 3(4), 536–557 (2007). 2. X. Michalet, F. Pinaud, T. D. Lacoste, M. Dahan, M. P. Bruchez, A. P. Alivisatos, and S. Weiss, “Properties of fluorescent semiconductor nanocrystals and their application to biological labeling,” Single Molecules 2(4), 261– 276 (2001). 3. M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-ir region,” J. Am. Chem. Soc. 131(49), 17736–17737 (2009). 4. J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011). 5. S. T. Hussain, S. Abu Bakar, B. Saima, and B. Muhammad, “Low temperature deposition of silver sulfide thin films by AACVD for gas sensor application,” Appl. Surf. Sci. 258(24), 9610–9616 (2012). 6. H. Wang and L. Qi, “Controlled synthesis of Ag2S, Ag2Se, and Ag nanofibers using a general sacrificial template and their application in electronic device fabrication,” Adv. Funct. Mater. 18(8), 1249–1256 (2008). 7. A. I. Kryukov, A. L. Stroyuk, N. N. Zin’chuk, A. V. Korzhak, and S. Y. Kuchmii, “Optical and catalytic properties of Ag2S nanoparticles,” J. Mol. Catal. Chem. 221(1-2), 209–221 (2004). 8. Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6(5), 3695–3702 (2012). 9. G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, and H. Dai, “In Vivo Fluorescence Imaging with Ag2S Quantum Dots in the Second Near-Infrared Region,” Angew. Chem. Int. Ed. Engl. 51(39), 9818– 9821 (2012). 10. A. Tubtimtae, K.-L. Wu, H.-Y. Tung, M.-W. Lee, and G. J. Wang, “Ag2S quantum dot-sensitized solar cells,” Electrochem. Commun. 12(9), 1158–1160 (2010). 11. X. Hou, X. Zhang, W. Yang, Y. Liu, and X. Zhai, “Synthesis of SERS active Ag2S nanocrystals using oleylamine as solvent, reducing agent and stabilizer,” Mater. Res. Bull. 47(9), 2579–2583 (2012). 12. K. Terabe, T. Nakayama, T. Hasegawa, and M. Aono, “Formation and disappearance of a nanoscale silver cluster realized by solid electrochemical reaction,” J. Appl. Phys. 91(12), 10110–10114 (2002). 13. K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, “Quantized conductance atomic switch,” Nature 433(7021), 47–50 (2005). 14. J.-L. Sun, J.-L. Zhu, X. Zhao, and Y. Bao, “Fabrication and photoconductivity of macroscopically long coaxial structured Ag/Ag2S nanowires with different core-to-shell thickness ratios,” Nanotechnology 22(3), 035202 (2011). #241289 Received 22 May 2015; revised 3 Jul 2015; accepted 13 Jul 2015; published 21 Jul 2015 © 2015 OSA 1 Aug 2015 | Vol. 5, No. 8 | DOI:10.1364/OME.5.001815 | OPTICAL MATERIALS EXPRESS 1815 15. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011). 16. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. NonCryst. Solids 330(1-3), 1–12 (2003). 17. A. B. Seddon, “Chalcogenide glasses A review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995). 18. D. Tsiulyanu and I. Stratan, “On the photodissolution kinetics of silver in glassy As2S3,” J. Non-Cryst. Solids 356(3), 147–152 (2010). 19. S. R. Elliott, “A unified mechanism for metal photodissolution in amorphous chalcogenide materials,” J. NonCryst. Solids 130(1), 85–97 (1991). 20. F. Sava, M. Popescu, A. Lorinczi, and A. Velea, “Possible mechanism of Ag photodiffusion in a-As2S3 thin films,” Phys. Status Solidi, B Basic Res. 250(5), 999–1003 (2013). 21. C. Lu, J. M. P. Almeida, N. Yao, and C. Arnold, “Fabrication of uniformly dispersed nanoparticle-doped chalcogenide glass,” Appl. Phys. Lett. 105(26), 261906 (2014). 22. Y. Zha, M. Waldmann, and C. B. Arnold, “A review on solution processing of chalcogenide glasses for optical components,” Opt. Mater. Express 3(9), 1259–1272 (2013). 23. G. C. Chern and I. Lauks, “Spin-coated amorphous chalcogenide films,” J. Appl. Phys. 53(10), 6979–6982 (1982). 24. G. C. Chern and I. Lauks, “Spin coated amorphous chalcogenide films structural characterization,” J. Appl. Phys. 54(5), 2701–2705 (1983). 25. G. C. Chern, I. Lauks, and A. R. McGhie, “Spin coated amorphous chalcogenide films thermal properties,” J. Appl. Phys. 54(8), 4596–4601 (1983). 26. Y. Zha, S. Fingerman, S. J. Cantrell, and C. B. Arnold, “Pore formation and removal in solution-processed amorphous arsenic sulfide films,” J. Non-Cryst. Solids 369, 11–16 (2013). 27. M. S. Leon-Velazquez, R. Irizarry, and M. E. Castro-Rosario, “Nucleation and Growth of Silver Sulfide Nanoparticles,” J. Phys. Chem. C 114(13), 5839–5849 (2010). 28. K. Akamatsu, S. Takei, M. Mizuhata, A. Kajinami, S. Deki, S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, “Preparation and characterization of polymer thin films containing silver and silver sulfide nanoparticles,” Thin Solid Films 359(1), 55–60 (2000). 29. R. Chen, N. T. Nuhfer, L. Moussa, H. R. Morris, and P. M. Whitmore, “Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas,” Nanotechnology 19(45), 455604 (2008). 30. C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solutionprocessed As2S3 chalcogenide glass waveguides,” Opt. Express 18(15), 15523–15530 (2010). 31. C. Tsay, F. Toor, C. F. Gmachl, and C. B. Arnold, “Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits,” Opt. Lett. 35(20), 3324–3326 (2010). 32. T. Wagner, T. Kohoutek, M. Vlcek, M. Munzar, and M. Frumar, “Spin-coated Ag-x(As0.33S0.67)(100-x) films: preparation and structure,” J. Non-Cryst. Solids 326-327, 165–169 (2003). 33. M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3, 443–454 (2001). 34. D. Y. Choi, S. Madden, R. P. Wang, A. Rode, M. Krolikowska, and B. Luther-Davies, “Nano-phase separation of arsenic tri-sulphide (As2S3) film and its effect on plasma etching,” J. Non-Cryst. Solids 353(8-10), 953–955 (2007). 35. P. Nemec, J. Jedelsky, M. Frumar, Z. Cernosek, and M. Vlcek, “Structure of pulsed-laser deposited arsenic-rich As-S amorphous thin films, and effect of light and temperature,” J. Non-Cryst. Solids 351(43-45), 3497–3502 (2005). 36. M. V. Kovalenko, R. D. Schaller, D. Jarzab, M. A. Loi, and D. V. Talapin, “Inorganically Functionalized PbSCdS Colloidal Nanocrystals: Integration into Amorphous Chalcogenide Glass and Luminescent Properties,” J. Am. Chem. Soc. 134(5), 2457–2460 (2012). 37. S. Novak, L. Scarpantonio, J. Novak, M. D. Pre, A. Martucci, J. D. Musgraves, N. D. McClenaghan, and K. Richardson, “Incorporation of luminescent CdSe/ZnS core-shell quantum dots and PbS quantum dots into solution-derived chalcogenide glass films,” Opt. Mater. Express 3(6), 729–738 (2013).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mineral chemistry of sulfide and sulfosalt minerals in the Cheshmeh-Noghreh barite (gold- silver) deposit, Sabzevar subzone, NE Kashmar

The Sebandoon Barite (gold-silver) deposit is located about 20 km NW of the Kashmar in the Central Iran. The rock units exposed in the area consist of Eocene volcano-sedimentary sequences of lithic tuff, rhyolitic tuff, tuffaceouce shale, lapilli tuff and agglomerate associated with pyroxene andesite and trachyandesite. The barite is composed of lenticular, banded and stockwork mineralization a...

متن کامل

Shape-controlled synthesis of protein-conjugated silver sulfide nanocrystals and study on the inhibition of tumor cell viability.

Stable protein-conjugated silver sulfide nanoparticles, nanorods and nanowires have been prepared by an aqueous chemistry method and the study results showed they had potential applications for tumor treatment.

متن کامل

Alloyed Copper Chalcogenide Nanoplatelets via Partial Cation Exchange Reactions

We report the synthesis of alloyed quaternary and quinary nanocrystals based on copper chalcogenides, namely, copper zinc selenide-sulfide (CZSeS), copper tin selenide-sulfide (CTSeS), and copper zinc tin selenide-sulfide (CZTSeS) nanoplatelets (NPLs) (∼20 nm wide) with tunable chemical composition. Our synthesis scheme consisted of two facile steps: i.e., the preparation of copper selenide-sul...

متن کامل

Synthesis, Optical and Structural Properties of Copper Sulfide Nanocrystals from Single Molecule Precursors

We report the synthesis and structural studies of copper sulfide nanocrystals from copper (II) dithiocarbamate single molecule precursors. The precursors were thermolysed in hexadecylamine (HDA) to prepare HDA-capped CuS nanocrystals. The optical properties of the nanocrystals studied using UV-visible and photoluminescence spectroscopy showed absorption band edges at 287 nm that are blue shifte...

متن کامل

Improving the efficiency of cadmium sulfide-sensitized titanium dioxide/indium tin oxide glass photoelectrodes using silver sulfide as an energy barrier layer and a light absorber

Cadmium sulfide (CdS) and silver sulfide (Ag2S) nanocrystals are deposited on the titanium dioxide (TiO2) nanocrystalline film on indium tin oxide (ITO) substrate to prepare CdS/Ag2S/TiO2/ITO photoelectrodes through a new method known as the molecular precursor decomposition method. The Ag2S is interposed between the TiO2 nanocrystal film and CdS nanocrystals as an energy barrier layer and a li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015